固體電解質(zhì)
物理性質(zhì)
-
固態(tài)的離子導體。有些具有接近、甚至超過熔鹽的高的離子電導率和低的電導激活能,這些固體電解質(zhì)常稱為快離子導體(fast ion conductor;FIC)。它形成的原因是晶體中的非導電離子形成剛性骨架,晶格內(nèi)部存在多于導電離子數(shù)的可占據(jù)位置,這些位置互相連通,形成一維隧道型、二維平面型或三維傳導型的離子擴散通道,導電離子在通道中可以自由移動。
應用
-
用途
廣泛應用于新型固體電池、高溫氧化物燃料電池、電致變色器件和離子傳導型傳感器件等。也用在記憶裝置、顯示裝置、化學傳 感器中,以及在電池中用作電極、電解質(zhì)等。例如,用固體電解質(zhì)碘制成的鋰-碘電池已用于人工心臟起搏器;以二氧化鋯為基質(zhì)的固體電解質(zhì)已用于制高溫測氧計等。
最新應用
雖然采用鈉離子的全固體電池也已經(jīng)逐漸展開研究,但采用鋰離子的全固體電池的研究更加活躍。
在全固體電池的研究中,如何提高表示固體電解質(zhì)鋰的擴散速度的鋰離子導電率是個重要課題。在最近的研究中,東京工業(yè)大學、豐田汽車公司和高能加速研究機構的研發(fā)小組發(fā)現(xiàn)了鋰離子導電率與有機電解液相當?shù)奈镔|(zhì)。主導研究的是東京工業(yè)大學研究生院綜合理工學研究科物質(zhì)電子化學專業(yè)的菅野了次教授。
菅野等人發(fā)表的是硫化物類固體電解質(zhì)的一種——Li10GeP2S12。鋰離子導電率在室溫(27℃)下非常高,為1.2×10-2S/cm。豐田試制了采用該固體電解質(zhì)的全固體電池,并于2012年10月公開。豐田證實“實現(xiàn)了原產(chǎn)品5倍”的輸出密度。
在本屆電池研討會上,以豐田為首,出光興產(chǎn)公司、三井金屬礦業(yè)公司、村田制作所、三星橫濱研究所及住友化學公司等也發(fā)表了論文。
豐田與大阪府立大學的辰巳砂研究室報告了可提高全固體電池壽命的研究成果。通過采用7Li2O·68Li2S·25P2S5,與該公司此前推進研究的75Li2S·25P2S5相比,實現(xiàn)了比較高的容量維持率。雙方試制了采用不同固體電解質(zhì)的全固體電池,以最大4V電壓進行充電后,在60℃下保存了1個月,采用7Li2O·68Li2S·25P2S5的電池的反應電阻沒有升高,約為當初的0.9倍,維持了86%的放電容量。而采用75Li2S·25P2S5的電池的反應電阻上升至當初的約2.0倍,放電容量維持率降到72%。
豐田稱:“7 Li 2O·68Li2S·25P2S5耐水性高,活性物質(zhì)和固體電解質(zhì)界面能夠穩(wěn)定。因此可抑制硫化氫的產(chǎn)生量,為電池的長壽命化做出了貢獻?!贝舜蔚膶嶒炇窃?0℃下實施的,由此可見,在高溫時也能抑制電池劣化。
負極材料采用金屬磷化物
固體電解質(zhì)與正極材料的組合備受關注的全固體電池還提出了高容量負極候選。就金屬磷化物發(fā)表演講的是大阪府立大學和出光興產(chǎn)的研發(fā)小組注。時下作為高容量負極受到關注的硅和錫雖然容量高,但與鋰制成合金時體積變化較大,難以延長壽命。
而金屬磷化物的特點是能形成金屬微粒子和Li3P。Li3P具有矩陣構造,有望抑制鋰與金屬微粒子的合金化反應造成的體積變化。另外,Li3P因鋰離子導電性高,僅利用活性物質(zhì)即可構成負極的電極部分。
此次發(fā)表的論文中的負極材料采用了磷化錫(Sn4P3)。由該負極材料與Li2S-P2S5類固體電解質(zhì)及鋰銦合金正極構成的試驗單元,即使負極電極中不含電解質(zhì)和導電添加劑也能作為充電電池使用,具備950mAh/g的初期放電量(圖10)。與采用Sn4P3、固體電解質(zhì)和乙炔黑以40:60:6重量比混合的電極復合體的單元相比,電極單位重量的容量約為2倍。
此外,觀察充放電前以及初次放電后和充電后的電極發(fā)現(xiàn),雖然出現(xiàn)了100μm級的裂紋,但Sn4P3與固體電解質(zhì)之間保持了出色的接觸界面。大阪府立大學認為,這要得益于Li2S-P2S5類固體電解質(zhì)的柔軟性。
詳細內(nèi)容
-
固體電解質(zhì)
solid electrolyte
發(fā)展
能斯脫(W.H.Nernst)最早(1899年)研究了 ZrO2-Y2O3固溶體的導電性。1937年出現(xiàn)了用ZrO2基的固溶體組裝的高溫燃料電池。自從1957年基烏科拉(K.Kiuk-kola)和瓦格納(C.Wagner)用ZrO2+15mo1%CaO作為固體電解質(zhì)成功地測定了一些金屬氧化物的生成自由焓之后,固體電解質(zhì)在高溫物理化學研究和在氣相氧分壓和液相氧活度的測定和控制中得到廣泛應用。1967年姚(Y.F.Y.Yao)和庫默爾(J.K.Kummer)發(fā)現(xiàn)了非化學計量比的Na2O與Al2O3的層狀復合氧化物Na2O·11Al2O3(又稱β-Al2O3)在室溫下具有高的電導率,進一步促進了快離子導電材料性質(zhì)及其結(jié)構的研究。
性質(zhì)
在冶金生產(chǎn)和高溫冶金物理化學研究中應用最廣的固體電解質(zhì)是以氧化鋯為基體,摻雜以7~20mo1%的二價或三價氧化物(如CaO、MgO、Y2O3和其他稀土氧化物)燒結(jié)制成的代位固溶體高溫陶瓷。
純ZrO2在常溫中是單斜晶型,加熱至1150℃會發(fā)生相變,轉(zhuǎn)變?yōu)樗姆骄?,同時體積收縮大約7%。加入CaO并經(jīng)過高溫煅燒后,形成了CaO與ZrO2的代位固溶體,ZrO2的晶型變?yōu)镃aF2型的立方晶體,并且不隨溫度的變化而改變,因而改善其抗熱震性。另一方面,一個Ca2+置換一個Zr4+,為保持電中性就要出現(xiàn)一個 O2-的空位。摻雜后的固溶體里有大量的氧離子空位。在高溫下,氧離子通過空位可以快速遷移,形成氧離子導電固體電解質(zhì)。1600℃時,摻雜 15mo1%CaO的 ZrO2的電導率約為 1.0西門子/厘米,高于同溫度中高爐渣的電導率(0.24~0.82 西門子/厘米)也大大高于25℃下1NKCl水溶液的電導率(0.1117 西門子/厘米,25℃)。這種 ZrO2高溫陶瓷具有高的熔點(2700℃)與極穩(wěn)定的化學性質(zhì)。在此固溶體里氧離子空位大量存在,因之氧離子的電導率比鈣離子與鋯離子的電導率約大1010倍,所以,由它作為電解質(zhì)而組成的電化學電池電極反應是氧的還原反應:
O2(氣)+4e─→2O2- ⑴
和氧離子的氧化反應:
2O2-─→O2(氣)+4e ⑵
反應
近年來,聚合物基質(zhì)的固體電解質(zhì)發(fā)展迅速。其組成為聚合物中摻入堿金屬鹽。常見的聚合物基質(zhì)包括聚氧化乙烯(PEO)、聚丙烯腈(PAN)等,常用的堿金屬為鋰鹽,陰離子對導電性有影響。有些時候基質(zhì)中所含有的溶劑分子(如碳酸酯)對材料性能有很大影響。此種固體電解質(zhì)在室溫電導率較低(10-6-10-5S/cm),在高溫可以達到10-3S/cm。
理化學研究中應用最廣的固體電解質(zhì)是以氧化鋯為基體,摻雜以7~20mo1%的二價或三價氧化物(如CaO、MgO、Y2O3和其他稀土氧化物)燒結(jié)制成的代位固溶體高溫陶瓷。純ZrO2在常溫下是單斜晶型,加熱到1150℃會發(fā)生相變,轉(zhuǎn)變?yōu)樗姆骄?,同時體積收縮約7%。加入CaO并經(jīng)高溫煅燒后,形成CaO與ZrO2的代位固溶體,ZrO2的晶型變?yōu)?CaF2型的立方晶體,且不隨溫度的變化而改變,從而改善其抗熱震性。另一方面,一個Ca2+ 置換一個Zr4+,為保持電中性就要出現(xiàn)一個O2-的空位。摻雜后的固溶體中有大量的氧離子空位。在高溫下,氧離子通過這些空位可以快速遷移,形成氧離子導電的固體電解質(zhì)。1600℃時,摻雜15mo1%CaO的ZrO2的電導率約為1.0西門子/厘米,高于同溫度下高爐渣的電導率(0.24~0.82西門子/厘米)也大大高于25℃下1NKCl水溶液的電導率(0.1117西門子/厘米,25℃)。這種ZrO2高溫陶瓷具有高的熔點(2700℃)和極穩(wěn)定的化學性質(zhì)。在此固溶體中氧離子空位大量存在,因之氧離子的電導率比鈣離子和鋯離子的電導率約大1010倍,所以,由它作為電解質(zhì)而組成的電化學電池的電極反應是氧的還原反應:O2(氣)+4e─→2O2- ⑴
和氧離子的氧化反應:
2O2-─→O2(氣)+4e ⑵
提問者:feipu67015
地點:-
瀏覽次數(shù):5005
提問時間:12-31 09:34
我有更好的答案