free性丰满hd毛多多,久久综合给合久久狠狠狠97色69 ,欧美成人乱码一区二区三区,国产美女久久久亚洲综合,7777久久亚洲中文字幕

0
問答首頁 最新問題 熱門問題 等待回答標(biāo)簽廣場
我要提問

電子百科

半導(dǎo)體材料

半導(dǎo)體材料

半導(dǎo)體材料的發(fā)展歷程

  •   半導(dǎo)體材料從發(fā)現(xiàn)到發(fā)展,從使用到創(chuàng)新,擁有這一段長久的歷史。宰二十世紀(jì)初,就曾出現(xiàn)過點接觸礦石檢波器。1930年,氧化亞銅整流器制造成功并得到廣泛應(yīng)用,是半導(dǎo)體材料開始受到重視。1947年鍺點接觸三極管制成,成為半導(dǎo)體的研究成果的重大突破。50年代末,薄膜生長激素的開發(fā)和集成電路的發(fā)明,是的微電子技術(shù)得到進(jìn)一步發(fā)展。60年代,砷化鎵材料制成半導(dǎo)體激光器,固溶體半導(dǎo)體此阿里奧在紅外線方面的研究發(fā)展,半導(dǎo)體材料的應(yīng)用得到擴(kuò)展。1969年超晶格概念的提出和超晶格量子阱的研制成功,是的半導(dǎo)體器件的設(shè)計與制造從雜志工程發(fā)展到能帶工程,將半導(dǎo)體材料的研究和應(yīng)用推向了一個新的領(lǐng)域。90年代以來隨著移動通信技術(shù)的飛速發(fā)展,砷化鎵和磷化煙等半導(dǎo)體材料成為焦點,用于制作高速高頻大功率激發(fā)光電子器件等;近些年,新型半導(dǎo)體材料的研究得到突破,以氮化鎵為代表的先進(jìn)半導(dǎo)體材料開始體現(xiàn)出超強(qiáng)優(yōu)越性,被稱為IT產(chǎn)業(yè)的新發(fā)動機(jī)。

半導(dǎo)體材料的特性

  •   1、電阻率

      半導(dǎo)體材料是一種具有特殊導(dǎo)電性能的功能材料,其電阻率處于導(dǎo)體電阻率( 0.00001Ω.cm以下)和絕緣體電阻率(10000000000Ω.cm)之間。例如純硅(Si)材料的電阻率約為100000Ω.cm 。半導(dǎo)體材料的電阻率對其雜質(zhì)含量、環(huán)境溫度、以及光照、電場、磁場、壓力等外界條件有非常高的靈敏性。

      2、能帶

      在孤立原子中的電子分別處在具有一定能量的電子軌道上。而在晶體中,原先在不同孤立原子中但具有相同能級的許多電子形成晶體時,由于量子效應(yīng),即 Pauli 原理的限制不能有兩個電子處于相同的狀態(tài),它們的能量必定彼此錯開,各自處在一個能量略有差異的一組子能級上,形成能帶。根據(jù)電子的能量分布,在某些能量范圍內(nèi)是不許有電子存在的稱之為禁帶,即能帶之間的間隙。由價電子填充的能帶,稱之為價帶或滿帶。價帶以上的能帶基本上是空的,其中最低的允許電子存在的能帶稱為導(dǎo)帶。根據(jù)價帶與導(dǎo)帶的分布情況,可以獲得金屬、半導(dǎo)體和絕緣體。在一般情況下,半導(dǎo)體的導(dǎo)帶底有少量電子,價帶頂有少量空穴,半導(dǎo)體的導(dǎo)電就是依靠導(dǎo)帶底的少量電子或價帶頂?shù)纳倭靠昭ā?/font>

      3、滿帶電子不導(dǎo)電

      當(dāng)價帶中存在一定的空穴和導(dǎo)帶中存在一定量的電子時,半導(dǎo)體材料才能導(dǎo)電。即,半導(dǎo)體材料的導(dǎo)電行為取決于價帶中的空穴和導(dǎo)帶中的電子。

      4、直接帶隙和間接帶隙

      價帶的電子可以通過熱激發(fā)或光照等激發(fā)到導(dǎo)帶中去。由光照激發(fā)價帶的電子到導(dǎo)帶而形成電子 — 空穴對的這個過程稱為本征光吸收。

      在非豎直躍遷過程中,光子主要提供躍遷所需要的能量,而聲子則主要提供所需要的動量。與豎直躍遷相比,非豎直躍遷是一個二級過程,發(fā)生的幾率要小得多,我們把導(dǎo)帶底和價帶頂處于k空間不同點的半導(dǎo)體稱為間接帶隙半導(dǎo)體。 (在晶體材料中,聲子的波長一般介于光子與電子波長之間) 。

      導(dǎo)帶中的電子躍遷到價帶空帶能級而發(fā)射光子, 是上述光吸收的逆過程, 稱為電子 —— 空穴對復(fù)合發(fā)光。

半導(dǎo)體材料的種類

  •   半導(dǎo)體材料按化學(xué)成分和內(nèi)部結(jié)構(gòu),大 致可分為以下幾類。

      1.元素半導(dǎo)體

      有鍺、硅、硒、硼、碲、銻等。50 年代,鍺在半導(dǎo) 體中占主導(dǎo)地位,但 鍺半導(dǎo)體器件的耐高溫和抗輻射性能較差,到 60 年代后期逐漸 被硅材料取代。用硅制造的半導(dǎo)體器件,耐高溫和抗輻射性能較好,特別適宜制作大 功率器件。因此,硅已成為應(yīng)用最多的一種增導(dǎo)體材料,目前的集成電路大多數(shù)是用 硅材料制造的。

      2.化合物半導(dǎo)體

      由兩種或兩種以上的元素化合而成的半導(dǎo)體材料。它 的種類很多,重要的有砷化鎵、磷化錮、銻化錮、碳化硅、硫化鎘及鎵砷硅等。其中 砷化鎵是制造微波器件和集成電的重要材料。碳化硅由于其抗輻射能力強(qiáng)、耐高溫和 化學(xué)穩(wěn)定性好,在航天技術(shù)領(lǐng)域有著廣泛的應(yīng)用。

      3.無定形半導(dǎo)體材料

      用作半導(dǎo)體 的玻璃是一種非晶體無定形半導(dǎo)體材料,分為氧化物玻璃和非氧化物玻璃兩種。這類 材料具有良好的開關(guān)和記憶特性和很強(qiáng)的抗輻射能力,主要用來制造閾值開關(guān)、記憶 開關(guān)和固體顯示器件。

      4.有機(jī)半導(dǎo)體材料

      已知的有機(jī)半導(dǎo)體材料有幾十種,包括萘、 蒽、聚丙烯腈、酞菁和一些芳香族化合物等,目前尚未得到應(yīng)用 。

半導(dǎo)體材料的制備

  •   不同的半導(dǎo)體器件對半導(dǎo)體材料有不同的形態(tài)要求,包括單晶的切片、磨 片、拋光片、薄膜等。半導(dǎo)體材料的不同形態(tài)要求對應(yīng)不同的加工工藝。常用的半導(dǎo) 體材料制備工藝有提純、單晶的制備和薄膜外延生長。

      所有的半導(dǎo)體材料都需要對原料進(jìn)行提純,要求的純度在 6 個“9”以上 ,最高達(dá) 11 個“9”以上。提純的方法分兩大類,一類是不改變材料的化學(xué)組成進(jìn)行提純,稱為 物理提純; 另一類是把元素先變成化合物進(jìn)行提純, 再將提純后的化合物還原成元素, 稱為化學(xué)提純。物理提純的方法有真空蒸發(fā)、區(qū)域精制、拉晶提純等,使用最多的是 區(qū)域精制?;瘜W(xué)提純的主要方法有電解、絡(luò)合、萃取、精餾等,使用最多的是精餾。 由于每一種方法都有一定的局限性,因此常使用幾種提純方法相結(jié)合的工藝流程以獲 得合格的材料。

      絕大多數(shù)半導(dǎo)體器件是在單晶片或以單晶片為襯底的外延片上作出的。成批量的 半導(dǎo)體單晶都是用熔體生長法制成的。直拉法應(yīng)用最廣,80%的硅單晶、大部分鍺單 晶和銻化銦單晶是用此法生產(chǎn)的,其中硅單晶的最大直徑已達(dá) 300 毫米。在熔體中 通入磁場的直拉法稱為磁控拉晶法,用此法已生產(chǎn)出高均勻性硅單晶。在坩堝熔體表 面加入液體覆蓋劑稱液封直拉法,用此法拉制砷化鎵、磷化鎵、磷化銦等分解壓較大 的單晶。懸浮區(qū)熔法的熔體不與容器接觸,用此法生長高純硅單晶。水平區(qū)熔法用以 生產(chǎn)鍺單晶。水平定向結(jié)晶法主要用于制備砷化鎵單晶,而垂直定向結(jié)晶法用于制備 碲化鎘、砷化鎵。用各種方法生產(chǎn)的體單晶再經(jīng)過晶體定向、滾磨、作參考面、切片、 磨片、倒角、拋光、腐蝕、清洗、檢測、封裝等全部或部分工序以提供相應(yīng)的晶片。

      在單晶襯底上生長單晶薄膜稱為外延。外延的方法有氣相、液相、固相、分子束 外延等。工業(yè)生產(chǎn)使用的主要是化學(xué)氣相外延,其次是液相外延。金屬有機(jī)化合物氣 相外延和分子束外延則用于制備量子阱及超晶格等微結(jié)構(gòu)。非晶、微晶、多晶薄膜多 在玻璃、陶瓷、金屬等襯底上用不同類型的化學(xué)氣相沉積、磁控濺射等方法制成。

半導(dǎo)體材料的應(yīng)用

  •   1、元素半導(dǎo)體材料

      硅在當(dāng)前的應(yīng)用相當(dāng)廣泛,他不僅是半導(dǎo)體集成電路,半導(dǎo)體器件和硅太陽能電池的基礎(chǔ)材料,而且用半導(dǎo)體制作的電子器件和產(chǎn)品已經(jīng)大范圍的進(jìn)入到人們的生活,人們的家用電器中所用到的電子器件80%以上與案件都離不開硅材料。鍺是稀有元素,地殼中的含量較少,由于鍺的特有性質(zhì),使得它的應(yīng)用主要集中與制作各種二極管,三極管等。而以鍺制作的其他錢江如探測器,也具有著許多的優(yōu)點,廣泛的應(yīng)用于多個領(lǐng)域。

      2、有機(jī)半導(dǎo)體材料

      有機(jī)半導(dǎo)體材料具有熱激活電導(dǎo)率,如萘蒽,聚丙烯和聚二乙烯苯以及堿金屬和蒽的絡(luò)合物,有機(jī)半導(dǎo)體材料可分為有機(jī)物,聚合物和給體受體絡(luò)合物三類。有機(jī)半導(dǎo)體芯片等產(chǎn)品的生產(chǎn)能力差,但是擁有加工處理方便,結(jié)實耐用,成本低廉,耐磨耐用等特性。

      3、非晶半導(dǎo)體材料

      非晶半導(dǎo)體按鍵合力的性質(zhì)分為共價鍵非晶半導(dǎo)體和離子鍵非晶半導(dǎo)體兩類,可用液相快冷方法和真空蒸汽或濺射的方法制備。在工業(yè)上,非晶半導(dǎo)體材料主要用于制備像傳感器,太陽能鋰電池薄膜晶體管等非晶體半導(dǎo)體器件。

      4、化合物半導(dǎo)體材料

      化合物半導(dǎo)體材料種類繁多,按元素在周期表族來分類,分為三五族,二六族,四四族等。如今化合物半導(dǎo)體材料已經(jīng)在太陽能電池,光電器件,超高速器件,微波等領(lǐng)域占據(jù)重要位置,且不同種類具有不同的應(yīng)用??傊?,半導(dǎo)體材料的發(fā)展迅速,應(yīng)用廣泛,隨著時間的推移和技術(shù)的發(fā)展,半導(dǎo)體材料的應(yīng)用將更加重要和關(guān)鍵,半導(dǎo)體技術(shù)和半導(dǎo)體材料的發(fā)展也將走向更高端的市場。

常見的半導(dǎo)體材料現(xiàn)狀及趨勢

  •   1、硅材料

      從提高硅集成電路成品率,降低成本看,增大直拉硅(CZ-Si)單晶的直徑和減小微缺陷的密度仍是今后CZ-Si發(fā)展的總趨勢。目前直徑為8英寸(200mm)的Si單晶已實現(xiàn)大規(guī)模工業(yè)生產(chǎn),基于直徑為12英寸(300mm)硅片的集成電路(IC‘s)技術(shù)正處在由實驗室向工業(yè)生產(chǎn)轉(zhuǎn)變中。目前300mm,0.18μm工藝的硅ULSI生產(chǎn)線已經(jīng)投入生產(chǎn),300mm,0.13μm工藝生產(chǎn)線也將在2003年完成評估。18英寸重達(dá)414公斤的硅單晶和18英寸的硅園片已在實驗室研制成功,直徑27英寸硅單晶研制也正在積極籌劃中。

      從進(jìn)一步提高硅IC‘S的速度和集成度看,研制適合于硅深亞微米乃至納米工藝所需的大直徑硅外延片會成為硅材料發(fā)展的主流。另外,SOI材料,包括智能剝離(Smart cut)和SIMOX材料等也發(fā)展很快。目前,直徑8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在開發(fā)中。

      理論分析指出30nm左右將是硅MOS集成電路線寬的“極限”尺寸。這不僅是指量子尺寸效應(yīng)對現(xiàn)有器件特性影響所帶來的物理限制和光刻技術(shù)的限制問題,更重要的是將受硅、SiO2自身性質(zhì)的限制。盡管人們正在積極尋找高K介電絕緣材料(如用Si3N4等來替代SiO2),低K介電互連材料,用Cu代替Al引線以及采用系統(tǒng)集成芯片技術(shù)等來提高ULSI的集成度、運算速度和功能,但硅將最終難以滿足人類不斷的對更大信息量需求。為此,人們除尋求基于全新原理的量子計算和DNA生物計算等之外,還把目光放在以GaAs、InP為基的化合物半導(dǎo)體材料,特別是二維超晶格、量子阱,一維量子線與零維量子點材料和可與硅平面工藝兼容GeSi合金材料等,這也是目前半導(dǎo)體材料研發(fā)的重點。

      2、GaAs和InP單晶材料

      GaAs和InP與硅不同,它們都是直接帶隙材料,具有電子飽和漂移速度高,耐高溫,抗輻照等特點;在超高速、超高頻、低功耗、低噪音器件和電路,特別在光電子器件和光電集成方面占有獨特的優(yōu)勢。

      目前,世界GaAs單晶的總年產(chǎn)量已超過200噸,其中以低位錯密度的垂直梯度凝固法(VGF)和水平(HB)方法生長的2-3英寸的導(dǎo)電GaAs襯底材料為主;近年來,為滿足高速移動通信的迫切需求,大直徑(4,6和8英寸)的SI-GaAs發(fā)展很快。美國莫托羅拉公司正在籌建6英寸的SI-GaAs集成電路生產(chǎn)線。InP具有比GaAs更優(yōu)越的高頻性能,發(fā)展的速度更快,但研制直徑3英寸以上大直徑的InP單晶的關(guān)鍵技術(shù)尚未完全突破,價格居高不下。

      GaAs和InP單晶的發(fā)展趨勢是:

      (1)。增大晶體直徑,目前4英寸的SI-GaAs已用于生產(chǎn),預(yù)計本世紀(jì)初的頭幾年直徑為6英寸的SI-GaAs也將投入工業(yè)應(yīng)用。

     ?。?)。提高材料的電學(xué)和光學(xué)微區(qū)均勻性。

     ?。?)。降低單晶的缺陷密度,特別是位錯。

     ?。?)。GaAs和InP單晶的VGF生長技術(shù)發(fā)展很快,很有可能成為主流技術(shù)。

      3、半導(dǎo)體超晶格、量子阱材料

      半導(dǎo)體超薄層微結(jié)構(gòu)材料是基于先進(jìn)生長技術(shù)(MBE,MOCVD)的新一代人工構(gòu)造材料。它以全新的概念改變著光電子和微電子器件的設(shè)計思想,出現(xiàn)了“電學(xué)和光學(xué)特性可剪裁”為特征的新范疇,是新一代固態(tài)量子器件的基礎(chǔ)材料。

     ?。?)Ⅲ-V族超晶格、量子阱材料。

      GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP? InGaAsP/InP等GaAs、InP基晶格匹配和應(yīng)變補(bǔ)償材料體系已發(fā)展得相當(dāng)成熟,已成功地用來制造超高速,超高頻微電子器件和單片集成電路。高電子遷移率晶體管(HEMT),贗配高電子遷移率晶體管(P-HEMT)器件最好水平已達(dá)fmax=600GHz,輸出功率58mW,功率增益6.4db;雙異質(zhì)結(jié)雙極晶體管(HBT)的最高頻率fmax也已高達(dá)500GHz,HEMT邏輯電路研制也發(fā)展很快。基于上述材料體系的光通信用1.3μm和1.5μm的量子阱激光器和探測器,紅、黃、橙光發(fā)光二極管和紅光激光器以及大功率半導(dǎo)體量子阱激光器已商品化;表面光發(fā)射器件和光雙穩(wěn)器件等也已達(dá)到或接近達(dá)到實用化水平。目前,研制高質(zhì)量的1.5μm分布反饋(DFB)激光器和電吸收(EA)調(diào)制器單片集成InP基多量子阱材料和超高速驅(qū)動電路所需的低維結(jié)構(gòu)材料是解決光纖通信瓶頸問題的關(guān)鍵,在實驗室西門子公司已完成了80×40Gbps傳輸40km的實驗。另外,用于制造準(zhǔn)連續(xù)兆瓦級大功率激光陣列的高質(zhì)量量子阱材料也受到人們的重視。

      雖然常規(guī)量子阱結(jié)構(gòu)端面發(fā)射激光器是目前光電子領(lǐng)域占統(tǒng)治地位的有源器件,但由于其有源區(qū)極薄(~0.01μm)端面光電災(zāi)變損傷,大電流電熱燒毀和光束質(zhì)量差一直是此類激光器的性能改善和功率提高的難題。采用多有源區(qū)量子級聯(lián)耦合是解決此難題的有效途徑之一。我國早在1999年,就研制成功980nm InGaAs帶間量子級聯(lián)激光器,輸出功率達(dá)5W以上;2000年初,法國湯姆遜公司又報道了單個激光器準(zhǔn)連續(xù)輸出功率超過10瓦好結(jié)果。最近,我國的科研工作者又提出并開展了多有源區(qū)縱向光耦合垂直腔面發(fā)射激光器研究,這是一種具有高增益、極低閾值、高功率和高光束質(zhì)量的新型激光器,在未來光通信、光互聯(lián)與光電信息處理方面有著良好的應(yīng)用前景。

      為克服PN結(jié)半導(dǎo)體激光器的能隙對激光器波長范圍的限制,1994年美國貝爾實驗室發(fā)明了基于量子阱內(nèi)子帶躍遷和阱間共振隧穿的量子級聯(lián)激光器,突破了半導(dǎo)體能隙對波長的限制。自從1994年InGaAs/InAIAs/InP量子級聯(lián)激光器(QCLs)發(fā)明以來,Bell實驗室等的科學(xué)家,在過去的7年多的時間里,QCLs在向大功率、高溫和單膜工作等研究方面取得了顯著的進(jìn)展。2001年瑞士Neuchatel大學(xué)的科學(xué)家采用雙聲子共振和三量子阱有源區(qū)結(jié)構(gòu)使波長為9.1μm的QCLs的工作溫度高達(dá)312K,連續(xù)輸出功率3mW.量子級聯(lián)激光器的工作波長已覆蓋近紅外到遠(yuǎn)紅外波段(3-87μm),并在光通信、超高分辨光譜、超高靈敏氣體傳感器、高速調(diào)制器和無線光學(xué)連接等方面顯示出重要的應(yīng)用前景。中科院上海微系統(tǒng)和信息技術(shù)研究所于1999年研制成功120K 5μm和250K 8μm的量子級聯(lián)激光器;中科院半導(dǎo)體研究所于2000年又研制成功3.7μm室溫準(zhǔn)連續(xù)應(yīng)變補(bǔ)償量子級聯(lián)激光器,使我國成為能研制這類高質(zhì)量激光器材料為數(shù)不多的幾個國家之一。

      目前,Ⅲ-V族超晶格、量子阱材料作為超薄層微結(jié)構(gòu)材料發(fā)展的主流方向,正從直徑3英寸向4英寸過渡;生產(chǎn)型的MBE和M0CVD設(shè)備已研制成功并投入使用,每臺年生產(chǎn)能力可高達(dá)3.75×104片4英寸或1.5×104片6英寸。英國卡迪夫的MOCVD中心,法國的Picogiga MBE基地,美國的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有這種外延材料出售。生產(chǎn)型MBE和MOCVD設(shè)備的成熟與應(yīng)用,必然促進(jìn)襯底材料設(shè)備和材料評價技術(shù)的發(fā)展。

     ?。?)硅基應(yīng)變異質(zhì)結(jié)構(gòu)材料。

      硅基光、電器件集成一直是人們所追求的目標(biāo)。但由于硅是間接帶隙,如何提高硅基材料發(fā)光效率就成為一個亟待解決的問題。雖經(jīng)多年研究,但進(jìn)展緩慢。人們目前正致力于探索硅基納米材料(納米Si/SiO2),硅基SiGeC體系的Si1-yCy/Si1-xGex低維結(jié)構(gòu),Ge/Si量子點和量子點超晶格材料,Si/SiC量子點材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED發(fā)光器件和有關(guān)納米硅的受激放大現(xiàn)象的報道,使人們看到了一線希望。

      另一方面,GeSi/Si應(yīng)變層超晶格材料,因其在新一代移動通信上的重要應(yīng)用前景,而成為目前硅基材料研究的主流。Si/GeSi MODFET和MOSFET的最高截止頻率已達(dá)200GHz,HBT最高振蕩頻率為160GHz,噪音在10GHz下為0.9db,其性能可與GaAs器件相媲美。盡管GaAs/Si和InP/Si是實現(xiàn)光電子集成理想的材料體系,但由于晶格失配和熱膨脹系數(shù)等不同造成的高密度失配位錯而導(dǎo)致器件性能退化和失效,防礙著它的使用化。最近,Motolora等公司宣稱,他們在12英寸的硅襯底上,用鈦酸鍶作協(xié)變層(柔性層),成功的生長了器件級的GaAs外延薄膜,取得了突破性的進(jìn)展。

      4、寬帶隙半導(dǎo)體材料

      寬帶隙半導(dǎo)體材料主要指的是金剛石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶體等,特別是SiC、GaN和金剛石薄膜等材料,因具有高熱導(dǎo)率、高電子飽和漂移速度和大臨界擊穿電壓等特點,成為研制高頻大功率、耐高溫、抗輻照半導(dǎo)體微電子器件和電路的理想材料;在通信、汽車、航空、航天、石油開采以及國防等方面有著廣泛的應(yīng)用前景。另外,III族氮化物也是很好的光電子材料,在藍(lán)、綠光發(fā)光二極管(LED)和紫、藍(lán)、綠光激光器(LD)以及紫外探測器等應(yīng)用方面也顯示了廣泛的應(yīng)用前景。隨著1993年GaN材料的P型摻雜突破,GaN基材料成為藍(lán)綠光發(fā)光材料的研究熱點。目前,GaN基藍(lán)綠光發(fā)光二極管己商品化,GaN基LD也有商品出售,最大輸出功率為0.5W.在微電子器件研制方面,GaN基FET的最高工作頻率(fmax)已達(dá)140GHz,fT=67 GHz,跨導(dǎo)為260ms/mm;HEMT器件也相繼問世,發(fā)展很快。此外,256×256 GaN基紫外光電焦平面陣列探測器也已研制成功。特別值得提出的是,日本Sumitomo電子工業(yè)有限公司2000年宣稱,他們采用熱力學(xué)方法已研制成功2英寸GaN單晶材料,這將有力的推動藍(lán)光激光器和GaN基電子器件的發(fā)展。另外,近年來具有反常帶隙彎曲的窄禁帶InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重視,這是因為它們在長波長光通信用高T0光源和太陽能電池等方面顯示了重要應(yīng)用前景。

      以Cree公司為代表的體SiC單晶的研制已取得突破性進(jìn)展,2英寸的4H和6H SiC單晶與外延片,以及3英寸的4H SiC單晶己有商品出售;以SiC為GaN基材料襯低的藍(lán)綠光LED業(yè)已上市,并參于與以藍(lán)寶石為襯低的GaN基發(fā)光器件的竟?fàn)?。其他SiC相關(guān)高溫器件的研制也取得了長足的進(jìn)步。目前存在的主要問題是材料中的缺陷密度高,且價格昂貴。

      II-VI族蘭綠光材料研制在徘徊了近30年后,于1990年美國3M公司成功地解決了II-VI族的P型摻雜難點而得到迅速發(fā)展。1991年3M公司利用MBE技術(shù)率先宣布了電注入(Zn,Cd)Se/ZnSe蘭光激光器在77K(495nm)脈沖輸出功率100mW的消息,開始了II-VI族蘭綠光半導(dǎo)體激光(材料)器件研制的高潮。經(jīng)過多年的努力,目前ZnSe基II-VI族蘭綠光激光器的壽命雖已超過1000小時,但離使用差距尚大,加之GaN基材料的迅速發(fā)展和應(yīng)用,使II-VI族蘭綠光材料研制步伐有所變緩。提高有源區(qū)材料的完整性,特別是要降低由非化學(xué)配比導(dǎo)致的點缺陷密度和進(jìn)一步降低失配位錯和解決歐姆接觸等問題,仍是該材料體系走向?qū)嵱没氨仨氁鉀Q的問題。

      寬帶隙半導(dǎo)體異質(zhì)結(jié)構(gòu)材料往往也是典型的大失配異質(zhì)結(jié)構(gòu)材料,所謂大失配異質(zhì)結(jié)構(gòu)材料是指晶格常數(shù)、熱膨脹系數(shù)或晶體的對稱性等物理參數(shù)有較大差異的材料體系,如GaN/藍(lán)寶石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引發(fā)界面處大量位錯和缺陷的產(chǎn)生,極大地影響著微結(jié)構(gòu)材料的光電性能及其器件應(yīng)用。如何避免和消除這一負(fù)面影響,是目前材料制備中的一個迫切要解決的關(guān)鍵科學(xué)問題。這個問題的解泱,必將大大地拓寬材料的可選擇余地,開辟新的應(yīng)用領(lǐng)域。

      目前,除SiC單晶襯低材料,GaN基藍(lán)光LED材料和器件已有商品出售外,大多數(shù)高溫半導(dǎo)體材料仍處在實驗室研制階段,不少影響這類材料發(fā)展的關(guān)鍵問題,如GaN襯底,ZnO單晶簿膜制備,P型摻雜和歐姆電極接觸,單晶金剛石薄膜生長與N型摻雜,II-VI族材料的退化機(jī)理等仍是制約這些材料實用化的關(guān)鍵問題,國內(nèi)外雖已做了大量的研究,至今尚未取得重大突破。

      5、低維半導(dǎo)體材料

      實際上這里說的低維半導(dǎo)體材料就是納米材料 ,之所以不愿意使用,主要是不想與現(xiàn)在熱炒的所謂的納米襯衣、納米啤酒 瓶、納米洗衣機(jī)等混為一談、從本質(zhì)上看,發(fā)展納米科學(xué)技術(shù)的重要目的之一,就是人們能在原子、分子或者納米的尺度水平上來控制和制造功能強(qiáng)大、性能優(yōu)越的納米電子、光電子器件和電路,納米生物傳感器件等,以造福人類??梢灶A(yù)料,納米科學(xué)技術(shù)的發(fā)展和應(yīng)用不僅將徹底改變?nèi)藗兊纳a(chǎn)和生活方式,也必將改變社會政治格局和戰(zhàn)爭的對抗形式。這也是為什么人們對發(fā)展納米半導(dǎo)體技術(shù)非常重視的原因。

      電子在塊體材料里,在三個維度的方向上都可以自由運動。但當(dāng)材料的特征尺寸在一個維度上比電子的平均自由程相比更小的時候,電子在這個方向上的運動會受到限制,電子的能量不再是連續(xù)的,而是量子化的,我們稱這種材料為超晶格 、量子阱材料。量子線材料就是電子只能沿著量子線方向自由運動,另外兩個方向上受到限制;量子點材料是指在材料三個維度上的尺寸都要比電子的平均自由程小,電子在三個方向上都不能自由運動,能量在三個方向上都是量子化的。

      由于上述的原因,電子的態(tài)密度函數(shù)也發(fā)生了變化,塊體材料是拋物線,電子在這上面可以自由運動;如果是量子點材料,它的態(tài)密度函數(shù)就像是單個的分子、原子那樣,完全是孤立的 函數(shù)分布,基于這個特點,可制造功能強(qiáng)大的量子器件。大規(guī)模集成電路的存儲器是靠大量電子的充放電實現(xiàn)的。大量電子的流動需要消耗很多能量導(dǎo)致芯片發(fā)熱,從而限制了集成度,如果采用單個或幾個電子做成的存儲器,不但集成度可以提高,而且功耗問題也可以解決。目前的激光器效率不高,因為激光器的波長隨著溫度變化,一般來說隨著溫度增高波長要紅移,所以現(xiàn)在光纖通信用的激光器都要控制溫度。如果能用量子點激光器代替現(xiàn)有的量子阱激光器,這些問題就可迎刃而解了。

      基于GaAs和InP基的超晶格、量子阱材料已經(jīng)發(fā)展得很成熟,廣泛地應(yīng)用于光通信 、移動 通訊、微波通訊 的領(lǐng)域。量子級聯(lián)激光器是一個單極器件,是近十多年才發(fā)展起來的一種新型中、遠(yuǎn)紅外光源,在自由空間通信、紅外對抗和遙控化學(xué)傳感等方面有著重要應(yīng)用前景。它對MBE制備工藝要求很高,整個器件結(jié)構(gòu)幾百到上千層,每層的厚度都要控制在零點幾個納米的精度,中國在此領(lǐng)域做出了國際先進(jìn)水平的成果;又如多有源區(qū)帶間量子隧穿輸運和光耦合量子阱激光器 ,它具有量子效率高、功率大和光束質(zhì)量好的特點,中國已有很好的研究基礎(chǔ);在量子點(線)材料和量子點激光器等研究方面也取得了令國際同行矚目的成就。

半導(dǎo)體材料的戰(zhàn)略地位

  •   上世紀(jì)中葉,單晶硅和半導(dǎo)體晶體管的發(fā)明及其硅集成電路的研制成功,導(dǎo)致電子工業(yè)革命;上世紀(jì)70年代初石英光導(dǎo)纖維材料和GaAs激光器的發(fā)明,促進(jìn)了光纖通信技術(shù)迅速發(fā)展并逐步形成了高新技術(shù)產(chǎn)業(yè),使人類進(jìn)入了信息時代。超晶格概念的提出及其半導(dǎo)體超晶格、量子阱材料的研制成功,徹底改變了光電器件的設(shè)計思想,使半導(dǎo)體器件的設(shè)計與制造從“雜質(zhì)工程”發(fā)展到“能帶工程”。納米科學(xué)技術(shù)的發(fā)展和應(yīng)用,將使人類能從原子、分子或納米尺度水平上控制、操縱和制造功能強(qiáng)大的新型器件與電路,必將深刻地影響著世界的政治、經(jīng)濟(jì)格局和軍事對抗的形式,徹底改變?nèi)藗兊纳罘绞健?/font>
提問者:Arttronix 地點:- 瀏覽次數(shù):7949 提問時間:05-26 18:11
我有更好的答案
提 交
撰寫答案
提 交