free性丰满hd毛多多,久久综合给合久久狠狠狠97色69 ,欧美成人乱码一区二区三区,国产美女久久久亚洲综合,7777久久亚洲中文字幕

0
問答首頁 最新問題 熱門問題 等待回答標(biāo)簽廣場
我要提問

電子百科

解碼器

解碼器

H.264解碼器中一種新穎的去塊效應(yīng)濾波器設(shè)計

  •   圖像的編解碼技術(shù)是多媒體技術(shù)的關(guān)鍵,H.264/AVC是國際上最先進的視頻壓縮技術(shù),其主要特點是采用小尺寸整數(shù)余弦變換、1/4像素的運動估計精度、多參考幀預(yù)測,基于上下文可變長度編碼和環(huán)路內(nèi)去塊效應(yīng)濾波器等技術(shù)。由于去塊效應(yīng)濾波器大約占整個解碼器1/3的運算量,因此該部分的設(shè)計成為整個解碼器設(shè)計的瓶頸,在此研究了一種新穎的環(huán)路內(nèi)去塊效應(yīng)濾波器設(shè)計。設(shè)計中采用5階流水線的去塊效應(yīng)模塊,利用混合濾波順序與打亂的存儲更新機制的方法提高了流水線暢順性,濾波一個16×16大小的宏塊僅需要198個時鐘周期。

      1 H.264/AVC的去塊效應(yīng)

      在基于塊的視頻編碼方法中,各個塊的編解碼是互相獨立的,由于預(yù)測、補償、變化、量化等引起塊與塊之間的邊界處會產(chǎn)生不連續(xù),因此新版H.264/AVC標(biāo)準采用了環(huán)路內(nèi)去塊濾波器來解決每個16×16宏塊重建后的邊界扭曲問題。去塊效應(yīng)濾波有兩種方法:后處理去塊效應(yīng)濾波;環(huán)路內(nèi)去塊效應(yīng)濾波。H.264/AVC采用環(huán)路內(nèi)去塊效應(yīng)濾波(見圖1),即濾波后的幀作為后面預(yù)測的參考幀。與之前的H.263或MPEG的濾波器相比較,新版H.264標(biāo)準采用的濾波器基于更小的4×4的基本宏塊,基本宏塊的邊界根據(jù)片級/宏塊級的特性與根據(jù)像素穿過濾波邊界的漸變度,對需要濾波的宏塊邊界進行有條件的濾波。重建幀的每個像素都需要從外部存儲器中重調(diào)出來以進行濾波處理或作為相鄰像素來判斷當(dāng)前像素是否需要進行濾波。顯然,這些操作需要消耗巨大的存儲器帶寬,對像素值進行修改。

    解碼系統(tǒng)中的去塊效應(yīng)濾波器

      本文設(shè)計的去塊效應(yīng)濾波模塊采用流水線技術(shù)來提高系統(tǒng)吞吐量。理想流水線的高效率實現(xiàn)基于相鄰的濾波操作沒有數(shù)據(jù)性。文獻[3,4]采用了非流水線的架構(gòu),因此無法提高系統(tǒng)的吞吐量。而對于流水線架構(gòu),如若不優(yōu)化濾波順序與存儲器訪問次序,則所產(chǎn)生的數(shù)據(jù)與結(jié)構(gòu)冒險也將大大降低流水線的效率。有人使用雙端口的片上SRAM來減少片外存儲器的帶寬,增加了系統(tǒng)的吞吐量,但是雙端口存儲器面積較大且增加功耗。與流水線的濾波器相比,非流水線濾波器的操作(包括條件判斷、查表、像素計算等)是順序化的,即每個時鐘僅處理一個操作類型,因此它所能達到的最大系統(tǒng)頻率要低很多。

      采用不同的邊界濾波順序,會大大的影響去塊效應(yīng)濾波器的性能。在H.264/AVC標(biāo)準中,每個宏塊的濾波順序得到了描述,只要保持濾波數(shù)據(jù)依賴性,H.264/AVC標(biāo)準所描述的濾波順序可以被改進。其濾波順序包括兩類:順序濾波和混合濾波。但是其濾波順序以及相應(yīng)的存儲更新機制都是針對非流水線結(jié)構(gòu)的,因此如果直接將之應(yīng)用于本文的流水線設(shè)計,就有可能引發(fā)嚴重的競爭與冒險從而降低流水線的性能。

      2 去塊效應(yīng)濾波器的存儲管理與濾波算法

      H.264/AvC標(biāo)準基于4×4宏塊作為濾波的基本宏塊,它有5種濾波強度,分別是Bs=0,1,2,3,4。濾波方式分為強濾波、標(biāo)準濾波和直通3種方式,其中強濾波影響邊界兩邊的共6個像素,標(biāo)準濾波影響邊界兩邊的共4個像素,直通方式不修改邊界兩側(cè)的像素。H.264/AVC標(biāo)準規(guī)定先對垂直邊界進行濾波,然后再對水平邊界進行濾波,只有對垂直與水平邊界全部濾波完成后,才可以對下一個宏塊進行濾波。同一個宏塊中,先對亮度部分進行濾波,再對色度部分進行濾波;色度部分濾波時,先對C6部分進行濾波,再對Cr部分進行濾波,對整個16×16宏塊的濾波順序如圖2所示。

    16×16宏塊的濾波順序圖

      (1)邊界濾波強度與像素濾波的存儲器

      按照H.264/AVC的標(biāo)準,需要對被濾波的邊界兩側(cè)的像素進行有條件的濾波。該條件決定于邊界強度BS與像素穿越邊界的傾斜度。邊界強度BS:0,1,2,3或4,在進行濾波之前被賦給相應(yīng)的邊界。BS=4表示強濾波,BS=0表示不需要進行濾波,即直通方式;否則,BS=1,2,3表示中等強度的濾波,色度部分邊界的濾波強度與對應(yīng)亮度部分是相同的。濾波每條水平或垂直邊界需要被提供邊界兩邊的8個像素,p0~p3&q0~q3;需要更新的像素共6個或4個:p0~p2&q0~q2或聲p0,p1&q0,q1。

      對一個16×16宏塊進行濾波需要提供左邊相鄰像素、右邊相鄰像素和本宏塊的像素。對于宏塊邊界,比如最左邊界與最右邊界而言,p0~p3與q0~q3來自不同的模塊(即分別來自相鄰宏塊的像素與本宏塊的像素);對于非16×16宏塊的邊界濾波,像素p0~p3與q0~q3均來自16×16宏塊本身,因此至少需要4個存儲單元:左相鄰像素存儲單元、上相鄰像素存儲單元、本身模塊的像素存儲單元和轉(zhuǎn)換緩沖單元,每個存儲單元的帶寬是32位。

      當(dāng)濾波從垂直邊界向水平邊界變換時,為了方便濾波過程中的存儲器訪問,這里利用額外的轉(zhuǎn)換緩沖器BUF0~BUF3來緩存中間濾波數(shù)據(jù),采用轉(zhuǎn)換緩沖器后獲取一行或一列像素的值(即p0~p3&q0~q3)只需要1個時鐘周期,否則需要4個時鐘周期。

      (2)濾波算法

      環(huán)路濾波的基本思想是:判斷該邊界是圖像的真實邊界還是編碼所形成的塊效應(yīng)邊界;對真實邊界不濾波,對偽邊界根據(jù)像素穿越邊界的漸變度和編碼方式進行濾波;根據(jù)濾波強度,選擇不同的濾波系數(shù)對邊界兩側(cè)像素進行濾波操作。濾波強度Bs=0的邊界將不會進行濾波,而濾波強度Bs不為0的邊界,依賴于獲取的量化參數(shù)α與β,進行閾值判斷,對鄰近的像素進行有條件的濾波。當(dāng)濾波強度Bs不是0,并且下面3個條件成立時,才對鄰近像素進行濾波。

      直接計算α,β是非常困難,而且消耗了很多硬件資源,因此通過查找表(LUT)獲取α,β的操作。像素的計算可以被分成下述兩種類型:

      (1)Bs=4

      如果以下的兩個條件成立,一個非常強的4抽頭或5抽頭濾波器將被用來對鄰近像素進行濾波,修改像素p0,p1,p2。

      否則,若式(2)中有一個不成立,將不會對p1與p2進行濾波,只會對p0進行弱強度的濾波。對于色度部分邊界的濾波,如果式(2)成立,只會對p0與q0進行濾波。

      (2)Bs=1~3

      亮度像素p0與q0的計算如下:

      而d[_]0是在裁減操作中被定義的:

      式中:c0來自于c1,而c1是通過查找兩維的LUT表獲取的。

      像素p1僅在式(3)成立的時候進行修改,同p0與q0修改的方式相同;而像素p2與q2對于濾波強度Bs不為4的情況下,不進行濾波。在色度分量進行濾波時,只有對p0與q0進行濾波,濾波的方式與亮度濾波的方式相同。

      3 流水線濾波架構(gòu)

      3.1 流水線分析

      流水線技術(shù)適合于連續(xù)的批處理任務(wù),當(dāng)一個N階流水線被灌滿以后,系統(tǒng)在一個周期內(nèi)可以并行處理N個任務(wù),由此提高了整組任務(wù)的處理速度并增大了系統(tǒng)吞吐能力。如果相鄰的濾波操作沒有數(shù)據(jù)競爭,并且所有的階段都被很好地進行了平衡,則濾波過程能夠被進行流水線操作化并可將速度提高N倍數(shù)。然而,如若存在競爭與冒險問題,則無法實現(xiàn)。此時的主要任務(wù)是如何均衡流水線的各個階段,如何把總的操作盡可能平均的分配給不同的流水線階段,如何避免或消除競爭與冒險,以便獲得一個比較平衡暢順的流水線架構(gòu)。按照去塊效應(yīng)濾波器模塊的實現(xiàn)算法,大多數(shù)的關(guān)鍵路徑位于以下操作中。

      (1)查找表操作:取得α,β,c1參數(shù)。α,β參數(shù)均需在查找表操作之前進行基于量化參數(shù)與片級偏移參數(shù)的計算中使用。當(dāng)Bs=1,2,3時,為獲取c1進行LUT操作,該操作比獲取α,β的LUT操作大3倍。

      (2)當(dāng)Bs=4時,需用4或5抽頭的濾波器進行濾波,原來的p,q像素值需要進行移位、相加等操作,以得到最后的結(jié)果。

      3.2 流水線架構(gòu)

      基于上述分析,這里提出了5階流水線以提高吞吐量,見圖3。由于整個任務(wù)被分配到不同的階段實現(xiàn),降低濾波的平均時間。

    5階流水線

      4 階流水線每個階段的任務(wù)

      階流水線每個階段的任務(wù)為:獲取像素與濾波強度;閾值判斷;預(yù)濾波;二次濾波;回寫。操作類型轉(zhuǎn)換與可重新配置路徑設(shè)計:首先進行操作類型的變換,使用加法與移位操作硬件替換了原來所有的乘法與除法硬件。當(dāng)Bs=4時,濾波被3,4,5抽頭的濾波器執(zhí)行,盡管應(yīng)用不同抽頭數(shù)目的濾波器,仍考慮硬件復(fù)用以及輸入數(shù)據(jù)路徑重新配置。由于設(shè)計中的表達式采用兩輸入加法,因而可以公用加法的中間結(jié)果。此外,通過重新配置在不同濾波抽頭系數(shù)時的加法器的輸入,達到共享資源的目的。同理,當(dāng)Bs=1,2,3時,通過輸入路徑的重新配置,同樣達到共享加法與減法器,達到共享資源的目的,資源使用前后對比見表1。

    路徑重配置前后的資源使用對比

      5 流水線競爭與混合濾波順序

      5.1 流水線競爭的原因

      (1)數(shù)據(jù)競爭:當(dāng)目的結(jié)果需要用作源操作數(shù)時;

      (2)結(jié)構(gòu)競爭:由于有限的存儲器帶寬,大量而頻繁的像素訪問需要以及存儲器的低效率管理而引起;

      (3)控制競爭:相鄰邊界的濾波是相對獨立的,當(dāng)一條邊界進入它的流水線階段時,它不能夠停止,直到它的第5階段新像素值回寫存儲器操作結(jié)束。控制競爭,由于分支語句或延遲等待引起的。

      5.2 一種新穎的混合濾波順序

      傳統(tǒng)的設(shè)計按照H.264/AVC標(biāo)準使用了基本的順序濾波,沒有考慮到相鄰濾波邊界的數(shù)據(jù)重用與數(shù)據(jù)相互依賴性以及存儲器的讀與寫訪問延時,因此這里提出了新穎的濾波方法。新穎的濾波順序仍然遵守先左后右,先上后下的原則,但是考慮了相鄰邊界的數(shù)據(jù)依賴性與重用性,解決了數(shù)據(jù)冒險與結(jié)構(gòu)冒險問題,避免了流水線的延遲。濾波包括亮度部分與色度部分,共48條邊界,濾波順序按照如圖4所示的從小到大的數(shù)字進行。

    混合濾波順序

      5.3 新穎的存儲更新策略

      考慮到外部存儲器的帶寬是32位的,為了配合這里提出的邊界濾波順序,避免由于存儲器的帶寬限制而引起的結(jié)構(gòu)競爭從而導(dǎo)致流水線出現(xiàn)延遲,這里提出了新穎的存儲器更新機制,即給不同的4×4宏塊分配不同的時隙進行像素回寫。

      去塊效應(yīng)模塊被分配在整個解碼模塊的最后一步實現(xiàn),而其它的重建步驟、像幀內(nèi)濾波模塊、幀間濾波模塊均以4×4宏塊為基本單位來進行流水線處理,但是由于去塊效應(yīng)濾波模塊中不同邊界之間的數(shù)據(jù)依賴關(guān)系,因而它是以整個16×16宏塊為基本單位進行濾波的。此外,只有整個16×16宏塊的像素重建完畢之后.才可以進行該宏塊的濾波,因而使用了2個SRAM,一個為像素重建提供像素;另一個為像素濾波提供像素,當(dāng)一個宏塊被處理完畢,兩個SRAM交換角色,這樣避免在兩個SRAM之間傳遞數(shù)據(jù)導(dǎo)致的時間與功耗開銷。使用仿真工具對整個去塊效應(yīng)頂層模塊DF[_]top進行了仿真,仿真部分結(jié)果如圖5所示。

    去塊效應(yīng)模塊頂層部分仿真結(jié)果

      6 結(jié) 語

      使用硬件描述語言完成了設(shè)計,并在FPGA平臺上得到驗證。設(shè)計采用流水線技術(shù),混合濾波方法,配合新穎的存儲器更新機制等方案,實時濾波頻率上限約為200 MHz,吞吐量為濾波每個16×16宏塊需要198個時鐘周期。使用HJTC,CMOS工藝,使用Syn-opsys Co.的DC工具進行綜合,時序分析以及功耗分析,結(jié)論是時序滿足收斂要求,并且完成單個宏塊的濾波消耗的能量大約為2μW,功耗得到了很大的降低。

基于USB2.0芯片的H.264解碼器芯片設(shè)計

  •   H.264/AVC標(biāo)準具有一系列優(yōu)于 MPEG4和H.263的新特性,在相同的重建圖像質(zhì)量下,H.264比H.263節(jié)約50%左右的碼率。但是節(jié)約碼率的代價是增加了算法復(fù)雜度。由于僅 用軟件已經(jīng)無法實現(xiàn)實時地解碼過程。所以必須利用硬件加速,這正是本解碼器設(shè)計的初衷。

      雖然H.264相較同質(zhì)量的H.263圖像,碼率節(jié)約 一半,但是由于本解碼器的目標(biāo)是解決H.264的高清圖像(1080i)的解碼工作,同時也要適用于普遍的視頻外設(shè),所以選用的接口既需要完成高速的碼流 源文件的傳輸工作也要易于插拔。而USB接口恰好符合這兩個條件。高質(zhì)量的源碼文件數(shù)據(jù)量較大,對傳輸接口要求較高。并且在FPGA的仿真環(huán)境下,USB 接口還要擔(dān)負起向PC上位機回傳解碼結(jié)果的任務(wù)。這就要求傳輸速度至少要保證超越解碼速度。和USB 1.1接口相比,USB 2.0接口的傳輸更加符合本設(shè)計的要求。

      經(jīng)過計算可知,傳輸接口需要至少30MB/s的傳輸速率,才能保證對1080i的圖像進行解碼。

      器件選型

      使用FPGA進行仿真和驗證基本已成為IC設(shè)計過程中必不 可少的環(huán)節(jié),尤其對于大規(guī)模的設(shè)計。本解碼器IC的設(shè)計使用Virtex II FPGA作為仿真環(huán)境。對于本設(shè)計,利用FF1517 BGA封裝的XC2V6000已經(jīng)充分滿足設(shè)計要求。在考慮設(shè)計成本的前提下,該款FPGA是相對高性價比的選擇。

      Cypress公司的EZ-USB FX2是一款集成了USB 2.0的微處理器,它集成了USB 2.0收發(fā)器、SIE(串行接口引擎)、增強的8051微控制器和可編程的外圍接口。FX2的這種優(yōu)化設(shè)計,幾乎能達到56MB/s的數(shù)據(jù)傳輸率,而 USB 2.0允許的最大帶寬是480Mb/s,即60MB/s。該芯片在對傳輸帶寬影響很小的前提下,增加了許多集成的控制功能。GPIF和Slave FIFO模式為外部的FPGA、DSP和ATA等提供了簡單和無縫的連接接口。

      系統(tǒng)構(gòu)架

      本設(shè)計的主體如圖1所示,在FPGA的仿真平臺中, Virtex II包括了解碼器主體和FPGA的接口模塊。USB 2.0芯片68013A作為獨立部分,負責(zé)FPGA和PC之間的USB數(shù)據(jù)傳輸。FPGA片外的SRAM與DRAM作為FPGA的擴展存儲設(shè)備,用于存放 解碼器所需的源碼文件,解碼后的文件以及解碼器中用到的軟件程序文件。 本設(shè)計中,解碼器端具備強大的功能,內(nèi)嵌有一個CPU??梢赃M行主動識別命令的功 能。所以PC端和解碼器處于對等的地位。PC端的工作包括發(fā)送命令頭,發(fā)送命令,發(fā)送碼流,接收回傳解碼結(jié)果等;FPGA端的工作包括接收并識別命令頭與 PC命令,接收并向SRAM和DRAM中存儲碼流,讀取SRAM和DRAM中的解碼結(jié)果并且回傳給PC端。

      USB 2.0芯片的工作方式及固件編寫

      1 芯片工作方式的確定

      在設(shè)計中,存在兩個過程涉及到大批量的數(shù)據(jù)文件傳輸:PC 向下傳輸源碼文件,F(xiàn)PGA向上位PC傳輸解碼結(jié)果文件。其對USB傳輸要求最高。如果當(dāng)傳輸?shù)脑创a文件無法適應(yīng)解碼速度時,會導(dǎo)致解碼器停頓;如果當(dāng)回 傳解碼結(jié)果滯后時,會造成未被傳輸?shù)慕獯a結(jié)果被覆蓋。任何一種情況的出現(xiàn),都將直接導(dǎo)致解碼器工作失敗。

      在傳輸要求甚高的情況下,選用EZ-USB FX2提供的Slave FIFO的BULK(批量傳輸)模式,能很好的滿足傳輸要求。在這種模式下,USB芯片內(nèi)存單元中劃分出6個端點(endpoint),以下簡稱為EP。 EP0和EP1被保留作為芯片配置FIFO。EP2、4、6、8可作為用戶傳輸,并且4個EP采用雙重FIFO(double FIFO)的方式組織構(gòu)成。

      舉例來說,如圖2所示,USB執(zhí)行OUT傳輸,將 EP2端點設(shè)成512字節(jié)雙重FIFO。在外部器件看來,USB端只要有1個512字節(jié)的FIFO為“半滿”,就可以繼續(xù)發(fā)送數(shù)據(jù)。當(dāng)操作的FIFO寫 “滿”時,F(xiàn)X2自動將其轉(zhuǎn)換到外部接口端,排除等候讀取;并將USB接口隊列中下一個為“空”的FIFO轉(zhuǎn)移到USB接口上,供其繼續(xù)寫數(shù)據(jù)。外部接口 端與此類似,只要有1個FIFO為“半滿”,就可以繼續(xù)讀取數(shù)據(jù)。當(dāng)前操作的FIFO讀“空”時,F(xiàn)X2自動將其轉(zhuǎn)換到USB接口端,排除等候?qū)懖⑼獠?接口隊列中下一個為“滿”的FIFO轉(zhuǎn)移到接口上,供外部器件使用。

      為雙重FIFO的工作過程。當(dāng)一個512字節(jié)的 FIFO滿時,F(xiàn)PGA可以取出里面的數(shù)據(jù),同時PC可以向另一個FIFO寫入數(shù)據(jù)(一組實箭頭)。當(dāng)一個512字節(jié)的FIFO空時,PC可以寫入數(shù)據(jù)。 同時FPGA可以讀取另一個仍然有數(shù)據(jù)的FIFO(一組虛箭頭)。

      雙重EP運作模式

      2 固件程序設(shè)計

      在通過編寫固件程序初始化USB設(shè)備過程中,以下重要的配置寄存器需要設(shè)置。

      IFCONFIG;設(shè)置USB時鐘由外部提供,并且選用Slave FIFO模式。

      EPXCFG(X=2,4,6,8);配置4個EP(端點FIFO)的模式。

      EPXFIFOCFG(X=2,4,6,8);配置4個EP的自動傳輸模式以及傳輸位寬。

      其他一些寄存器,根據(jù)實際的需要可以單獨配置。本設(shè)計中配置EP2用于傳輸命令頭,EP4用于傳輸源碼文件,EP6用于傳輸命令,EP8用于傳輸解碼結(jié)果文件。

      在完成固件程序的設(shè)計之后,可以利用FX2自帶的Control Panel將固件程序的編譯結(jié)果下載到68013A的芯片中,或者存放在外部的I2C中,以便下次復(fù)位時,芯片自己讀取。

      3 電路設(shè)計原理圖

      電路設(shè)計原理圖

      圖4為本設(shè)計的電路設(shè)計原理圖,原件按左起以及上起順序分別為:CY7C68013A芯片、電源耦合電容組、USB 2.0標(biāo)準接口、標(biāo)準RS232串行口、外部晶體振蕩器和HIN232串口芯片。本設(shè)計是按照這一電路原理圖制作電路板圖,完成USB 2.0的功能的。

      FPGA上解碼器與USB接口模塊的設(shè)計

      SLAVE FIFO的模式下,F(xiàn)PGA可以主動決定是否有必要讀取USB內(nèi)部FIFO中的數(shù)據(jù),而不僅僅是被動的接受PC發(fā)送的數(shù)據(jù)。如圖5所示,控制方式: SLOE、SLRD和SLWR作為EP的讀寫信號與使能控制信號。FIFOADR[1:0]作為4個EP的選擇信號,即選擇當(dāng)前操作的目標(biāo)EP。 PKTEND是FPGA主動命令USB芯片向上位PC發(fā)送數(shù)據(jù)的控制端。FLAGX(X=A,B,C,D)表示當(dāng)前選中的FIFO的空滿信息。FD(8位 或者16位)為雙向的數(shù)據(jù)傳輸口。FPGA接口控制這些端口,達到對USB進行操作的目的。

      解碼器與USB接口

      FPGA接口中,本設(shè)計還定義了一個深度為256,寬度為32位的FIFO(內(nèi)部 FIFO)。原因在于:本設(shè)計中SRAM和DRAM部分要不斷地被解碼器調(diào)用,這樣就導(dǎo)致存儲單元被占用。此時USB是無法對存儲單元操作的。所以在 FPGA接口中,先將多個USB傳輸?shù)臄?shù)據(jù)FD(8位或者16位)拼接成32位數(shù)據(jù)存入內(nèi)部FIFO,當(dāng)SRAM和DRAM空閑時,再向其傳輸。這樣的處 理,使得USB傳輸不依賴于存儲單元的工作狀態(tài),進一步提高了USB傳輸?shù)乃俣龋詽M足傳輸?shù)囊蟆?/font>

      設(shè)計驗證及結(jié)果分析

      當(dāng)開發(fā)完Windows操作系統(tǒng)下的USB驅(qū)動程序后,本設(shè)計成功的利用EZ- USB芯片與Virtex II FPGA完成了視頻數(shù)據(jù)的傳輸工作。并且在FPGA工作的66MHz以下的頻率時,完成了對H.264格式視頻的實時傳輸、解碼。傳輸速率的檢測中, USB對大批量數(shù)據(jù)的傳輸可以達到33MB/s以上的速度,完全適應(yīng)解碼器的要求。

      設(shè)計分析:本設(shè)計利用了兩級的FIFO,充分的發(fā)揮了USB 2.0的速度優(yōu)勢。設(shè)計方案解除了傳輸與解碼過程中的瓶頸,實現(xiàn)了無縫連接。不足之處是由于USB芯片的Slave FIFO模式限制,PC與解碼器直接必須使用命令交互的方式進行通信,占用了一定的帶寬。在命令過于頻繁的狀態(tài)下,效率不高,但對大批量數(shù)據(jù)傳輸影響很 小。

      結(jié)束語

      驗證平臺下成功,并且實際通過多種壓縮率的源碼文件測試,實現(xiàn)了平均33MB/s,最高40MB/s的速率。完成并且超過了設(shè)計要求。

解碼器與譯碼器使用注意事項

  •   1. OUT輸出的交流電壓取決于IN輸入的交流電壓.出廠是為220V;O/C是常開或常閉的繼電器輸出.接線后,就常開可以控制輸出12V電壓的開和關(guān),通斷.地址碼是二進制,把第N路減一,轉(zhuǎn)換成二進制即可。

      2. 小于(100米)用RS-232相連;100~1000米以下則要用RS-422方式進行控制,必須用232轉(zhuǎn)485的轉(zhuǎn)接器.總線可負載最多64個解碼器.與計算機相連,COM口連接3正,5負的發(fā)碼線。

      3. 解碼器故障:1.是否電源沒連接好;2.芯片是否壓反或沒壓緊;3.地址碼是否撥對;4.COM口是否屏蔽;5.協(xié)議設(shè)置是否正確。

      4. 譯碼器是控制解碼器和智能球等.它是連接收碼線2正,5負的。

      5. 如何接一體球:譯碼器的RS-232接主機的COM;T+接一體球的T-,T-接一體球的T+;,如果要連接好幾個一體球,直接把譯碼器的RS-232并聯(lián)起來就可以了.譯碼器的地址碼是第N路減1的二進制.而一體球的地址碼是第N路的二進制。

      6. 當(dāng)與主機相連接時用解碼器3.5針相連接的發(fā)碼線.當(dāng)與一體球相連接時用譯碼器2.5針相連接的收碼線。

      7. 當(dāng)解碼器里的燈閃爍不正常時,可將電源斷電,然后重新上電即可。

      8. 當(dāng)用422轉(zhuǎn)接頭時,注意正負極,如果轉(zhuǎn)接頭這邊是接負,那么解碼器那邊就接正,如果轉(zhuǎn)接頭這邊接正,那么解碼器那邊接負。

提問者:60user113 地點:- 瀏覽次數(shù):4576 提問時間:08-17 18:48
我有更好的答案
提 交
撰寫答案
提 交